Bird collisions with anthropogenic objects are well documented in the literature, including those involving wind turbines. The purpose of this study was to evaluate and help improve the effectiveness of an automated detection and deterrent system designed to minimize the risk of raptors colliding with wind turbines. We evaluated the DTBird® system (Liquen Consultoría Ambiental, S.L., Madrid, Spain), which is designed to detect and deter raptors flying near and in the risk zone of wind turbines. The DTBird system includes a camera/video-based detection module that detects and tracks objects based on settings calibrated for birds with specific wingspans, and a collision-avoidance or deterrence module that emits sounds designed to discourage birds from proceeding into the collision risk zone of an operational turbine. The deterrence module first emits an audible warning signal when the surveillance system estimates that a detected flying object (whether a bird or an inanimate object) has crossed a calibrated distance threshold. If the surveillance system estimates that the tracked object crosses a second, closer distance threshold, then it emits a stronger dissuasion signal intended to scare the bird away from the signal noise and turbine.
Author: H.T. Harvey & Associates
Publication: American Wind and Wildlife Institute
Year Published: 2018