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It has been previously suggested that the generation of coherent vortical structures
in the near-wake of a self-propelled vehicle can improve its propulsive efficiency
by manipulating the local pressure field and entrainment kinematics. This paper
investigates these unsteady mechanisms analytically and in experiments. A self-
propelled underwater vehicle is designed with the capability to operate using either
steady-jet propulsion or a pulsed-jet mode that features the roll-up of large-scale
vortex rings in the near-wake. The flow field is characterized by using a combination of
planar laser-induced fluorescence, laser Doppler velocimetry and digital particle-image
velocimetry. These tools enable measurement of vortex dynamics and entrainment
during propulsion. The concept of vortex added-mass is used to deduce the local
pressure field at the jet exit as a function of the shape and motion of the forming
vortex rings. The propulsive efficiency of the vehicle is computed with the aid of towing
experiments to quantify hydrodynamic drag. Finally, the overall vehicle efficiency is
determined by monitoring the electrical power consumed by the vehicle in steady and
unsteady propulsion modes. This measurement identifies conditions under which the
power required to create flow unsteadiness is offset by the improved vehicle efficiency.
The experiments demonstrate that substantial increases in propulsive efficiency, over
50 % greater than the performance of the steady-jet mode, can be achieved by using
vortex formation to manipulate the near-wake properties. At higher vehicle speeds,
the enhanced performance is sufficient to offset the energy cost of generating flow
unsteadiness. An analytical model explains this enhanced performance in terms of
the vortex added-mass and entrainment. The results suggest a potential mechanism
to further enhance the performance of existing engineered propulsion systems. In
addition, the analytical methods described here can be extended to examine more
complex propulsion systems such as those of swimming and flying animals, for whom
vortex formation is inevitable.
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1. Introduction
Propulsion in air and water at high Reynolds numbers is typically studied by

considering the mean (i.e. time-averaged) flow created by the propulsor. In this steady
flow approach, the thrust produced by the system is assumed to be dependent only
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on the mean velocity profiles upstream and in the wake of the propulsor (Prandtl &
Tietjens 1934). Variations in the local fluid pressure relative to ambient conditions
in the free stream are neglected. The classical expressions for Froude and rocket
efficiency, ηf and ηr , respectively, are derived under these conditions (Prandtl 1952;
Houghton & Carpenter 2003):

ηf =
2

1 +
Uw

U∞

, (1.1)

ηr =
2

Uw

U∞
+

U∞

Uw

(1.2)

where U∞ and Uw are the free-stream speed and average wake speed relative to
the vehicle, respectively. As a consequence of the steady flow assumption, schemes to
enhance propulsive efficiency have focused on manipulating the mean velocity profiles
upstream and aft of the propulsor. These efforts have included the use of low-RPM
propellers (Wu 1962), coaxial contrarotating propellers (Hadler 1969; Cox & Reed
1988), propellers with vane wheels (Grim 1980; Blaurock 1990), ducted propellers
(Stipa 1931; Sachs & Burnell 1962), pre- and post-swirl devices (Narita et al. 1981;
Grothues-Spork 1988) and flow-smoothing devices (Glover 1987). These strategies
typically achieve increases in propulsive efficiency of only a few per cent, with a few
reports of increases up to 25 % (Breslin & Andersen 1996).

If we remove the assumption of steady flow and allow for spatiotemporal
fluctuations of the fluid velocity and pressure, a richer parameter space becomes
available to enhance propulsive efficiency. For example, a growing body of literature
has suggested that pulsed-jet propulsion and the associated vortex formation can
potentially increase propulsive efficiency relative to an equivalent steady jet (Lockwood
1961; Binder & Didelle 1981; Krueger & Gharib 2005; Choutapalli et al. 2005; Paxson
et al. 2006; Krieg & Mohseni 2008; Moslemi & Krueger 2010 and references therein).
While the presence of vortex formation is widely recognized in these studies, the
mechanisms leading to enhanced performance have only been examined relatively
recently. Krueger & Gharib (2003, 2005) have proposed that vortex formation
increases the pressure at the exit of the propulsor above the ambient pressure in
the free stream. In principle, this has the effect of augmenting the generated thrust
or, equivalently, reducing the form drag of the propulsion system.

Additionally, vortex formation has been observed to augment entrainment of
ambient fluid in the wake of the propulsor (Hussain & Husain 1989; Dabiri & Gharib
2004; Olcay & Krueger 2008). Since the momentum flux required to overcome drag
is proportional to the product of the wake volume and excess wake velocity (i.e.
Uw − U∞; see § 2), the recruitment of ambient fluid via entrainment (i.e. increased
wake volume) enables the system to support lower wake velocities on average while
maintaining a given thrust. The lower wake velocities translate to reduced kinetic
energy losses in the wake (for a given thrust), due to the quadratic dependence of
wake kinetic energy on wake velocity. Therefore, the ultimate effect of entrainment
is to increase propulsive efficiency by reducing the magnitude of kinetic energy losses
in the wake (i.e. lower Uw/U∞ in (1.1) and (1.2)).

In summary, vortex formation can increase propulsive efficiency by increasing the
generated thrust via the vortex overpressure in the near-wake and by decreasing the
kinetic energy losses in the wake via vortex entrainment.
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Previous studies of vortex-enhanced propulsion have not considered the full
dynamics of a self-propelled vehicle, focusing instead on the near-wake vortex
dynamics of stationary propulsors. The external flow past a moving propulsor is
known to affect near-wake vortex formation (Krueger, Dabiri & Gharib 2006) and
therefore merits inclusion in order to add relevance to real air and ocean vehicles.
Furthermore, previous comparisons between unsteady and steady propulsion have
used idealized, theoretical models of steady-jet propulsion when studying unsteady
propulsion and vice versa. In this sense, previous comparisons have been indirect. In
this paper, we investigate the dynamics of a self-propelled underwater vehicle that
is designed to operate in both steady-jet and unsteady vortex formation regimes.
The wake is characterized quantitatively in both cases by using planar laser-induced
fluorescence (PLIF), laser Doppler velocimetry (LDV) and digital particle-image
velocimetry (DPIV). The vehicle performance in steady and unsteady modes is
quantified by measuring the Froude propulsive efficiency based on mean wake
profiles. The hydrodynamic drag on the vehicle is measured in towing experiments
to calculate an alternative propulsive efficiency that considers the work to overcome
drag as the ‘useful work’ in the efficiency definition. In addition, the electrical power
consumed by the vehicle is monitored in real-time to estimate the overall vehicle
efficiency. This measurement is important because it determines whether the added
energy cost of generating flow unsteadiness is compensated by the improved vehicle
performance. And yet, it does not appear that this kind of direct measurement in
the context of comparisons with steady-jet propulsion has been made previously. We
show that, under certain conditions, the energy saved due to increased propulsive
efficiency exceeds the energy cost of generating flow unsteadiness. These results can
be explained in terms of the wake dynamics, especially the wake vortex overpressure
and entrainment.

Section 2 revisits the equations of motion to demonstrate via a control volume
analysis the mechanisms whereby vortex formation can augment propulsive efficiency.
This derivation extends previous analyses (Krueger 2001) by considering the entire
self-propelled vehicle in an arbitrary unidirectional motion and by allowing more
general wake kinematics than previously considered. The derivation makes clear the
important role of local fluid pressure as a tool for augmenting propulsion in unsteady,
incompressible flows. It is further demonstrated that the local fluid pressure in the
near-wake can be estimated by employing the concept of vortex added-mass (Krueger
& Gharib 2003; Dabiri 2006).

Sections 3 and 4 describe the vehicle design and experimental methods used
to study the vehicle, respectively. Measurement results are presented in § 5, with
special emphasis on the relative performance of the vehicle in unsteady propulsion
as compared to the steady propulsion mode. Finally, § 6 discusses the results and
proposes their extension to other propulsion platforms.

2. Analytical model
To derive a relationship between the propulsive efficiency of a self-propelled vehicle

and the characteristics of its near-wake, let us first apply the equations of motion
to a control volume surrounding the vehicle. Figure 1 illustrates a submarine vehicle
and associated control volume, both inspired by the geometry of the vehicle studied
in experiments (see § 3).

The control volume has surface normal nsub and is displaced outward from the
surface of the vehicle by a distance δ that is comparable to, but greater than, the
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δ

Figure 1. Submarine (black silhouette) and associated control volume (dashed and dotted
lines). See text for symbol definitions.

boundary-layer thickness. By this construction, the viscous stresses on the vehicle
surface are internal to the control volume. However, the effect of skin friction does
appear in the difference between the momentum flux entering and exiting the annular
region of thickness δ. The force of the propulsor (i.e. propeller) on the fluid is
also applied inside the control volume. For the sake of generality, we allow for
the possibility of external force Fext and external work Wext applied to the vehicle.
In the experiments described in the next section, the dynamic friction between the
bearings of the vehicle support strut and the rails of the water tank contributes to
Fext and external work, Wext . More generally, Fext is a surrogate for the inertial forces
associated with unsteady translation of the vehicle, and it can be considered the force
required to constrain the control volume in a steady frame of reference when the
vehicle generates a net thrust that would tend to accelerate the vehicle and its control
volume. Wext also includes a contribution from the work of the inertial forces.

In the reference frame of the vehicle, the free-stream flow has velocity U∞. Similar
to the experimental vehicle, fluid enters the model vehicle at velocity uin and local
pressure pin through slots on the lateral surfaces of the vehicle. Fluid exits the vehicle
at velocity uout and local pressure pout through a nozzle at the rear. The velocities
U∞, uin and uout are generally time-dependent, and uin and uout may be spatially
non-uniform across the surfaces ∂SUB in and ∂SUBout , respectively.

The equations expressing conservation of mass, streamwise momentum (henceforth
the x-direction) and energy applied to the submarine control volume can be written
as

mass: 0 = ρ

∮
∂SUBout

uout · nsub dA + ρ

∮
∂SUB in

uin · nsub dA, (2.1)

x-momentum: Fext,x = ρ

[
∂

∂t

∫
SUB

u dV +

∮
∂SUBout

u2
out dA

]
+

∮
∂SUB

p nsub,x dA, (2.2)

energy: Ẇext =
ρ

2

∂

∂t

∫
SUB

|u|2 dV +
ρ

2

∮
∂SUB in

|uin|2uin · nsub dA

+
ρ

2

∮
∂SUBout

|uout |2uout dA +

∮
∂SUBout

p (uout · nsub) dA, (2.3)

where Fext,x and nsub,x are the streamwise scalar components of Fext and nsub,
respectively; ρ is the fluid density; and the overdot in (2.3) indicates a time derivative.
Equations (2.1)–(2.3) assume that the flow is incompressible and adiabatic and that
the mass, momentum and energy fluxes through the annular region of thickness
δ are negligible relative to the fluxes through the propulsor. In addition, it is
assumed that free-stream fluid enters the vehicle through ∂SUB in without appreciable
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Figure 2. (a–c) Vortex wake and associated control volume. Nozzle exit is indicated by black
silhouette. Dashed line indicates the boundary of forming wake vortex. See text for symbol
definitions.

change in speed, such that |uin| ≈ |U∞| and pin ≈ p∞. Since fluid enters the vehicle
nearly perpendicular to the x-direction, the contribution of the inlet flow uin to
(2.2) is assumed to be negligible compared with the axial momentum flux across
∂SUBout .

At this stage, classical analyses of steady propulsion employ the assumption that the
local pressure around the vehicle, including the pressure in the wake, is approximately
equal to the free-stream pressure (Prandtl 1952; Houghton & Carpenter 2003). This
assumption eliminates the pressure integrals from (2.2) and (2.3), and leads to the
result described in the previous section that the vehicle performance is a function
only of the velocity profiles upstream and in the wake. In the present derivation, we
will allow for the existence of non-negligible deviations from free-stream pressure at
the nozzle exit (i.e. at ∂SUBout ); hence, the pressure integrals are retained.

The pressure at ∂SUBout can be related to the wake characteristics by considering
a second control volume surrounding the forming wake vortex, as illustrated in
figure 2.

During pulsed-jet propulsion, each fluid pulse exiting the vehicle forms a large-scale,
coherent vortex. A well-defined boundary exists between the ‘vortex bubble’ forming
at the nozzle exit and the ambient fluid. This has been observed in empirical studies
of pulsed jets using dye (Olcay & Krueger 2008) as well as in streamlines (Dabiri
& Gharib 2004) and Lagrangian coherent structures (Shadden, Dabiri & Marsden
2006) extracted from PIV data. As illustrated in figure 2, the vortex bubble grows
in time until either the end of the fluid pulse at time T or until the vortex ring
pinches off from the nozzle at time F , according to the formation number concept
of Gharib, Rambod & Shariff (1998). We consider the dynamics of the wake vortex
bubble during the interval 0 < t < T, F .

We treat the vortex boundary ∂VB as a time-dependent material surface that,
together with the surface ∂SUBout , bounds a vortex control volume with unit normal
nVB . Fluid enters the vortex control volume from the exit of the vehicle nozzle
and via an entrainment mass flux ṁentrain for which uentrain · nVB ≈ 0 on ∂VB . This
assumption of near-tangential entrainment flow on the surface of the wake vortex,
with the entrained fluid ultimately entering the vortex from the rear, is consistent
with empirical observations (Maxworthy 1972; Shadden et al. 2006; Olcay & Krueger
2008).

Following an analysis similar to that which led to (2.1)–(2.3), and noting that
force and work contributions analogous to Fext and Wext (denoted F VB

ext,x and WVB
ext ,

respectively) are applied to the control volume VB to maintain the co-moving frame,
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SU B VB

∂VB

∂SUBout

∂SUBin

∂SUBbody

SUB

Figure 3. Combined vehicle–wake control volume. Vehicle is indicated by black silhouette
and wake vortex is indicated by grey patch. Dashed and dotted lines indicate the boundary of
combined control volume. See text for symbol definitions.

the corresponding equations of motion are

mass: ρ
∂VVB

∂t
+ ρ

∮
∂SUBout

uout · nVB dA − ṁentrain = 0, (2.4)

x-momentum: ρ
∂

∂t

∫
VB

u dV + ρ

∮
∂SUBout

uout (uout nVB ,x) dA

= −
∮

∂SUBout

p nVB ,x dA −
∮

∂VB

p nVB ,x dA + F VB
ext,x , (2.5)

energy:
ρ

2

[
∂

∂t

∫
VB

|u|2 dV +

∮
∂SUBout

|uout |2(uout · nVB ) dA

]

= −
∮

∂SUBout

p (uout · nVB ) dA + ẆVB
ext , (2.6)

where VVB in (2.4) is the time-dependent volume of the vortex bubble. Solving each
of (2.4)–(2.6) for the flux integral over ∂SUBout and noting that nVB = −nsub on
∂SUBout , we can rewrite (2.1)–(2.3) such that the dependence on flow properties at
∂SUBout is replaced by a dependence on flow properties on ∂VB :

mass: 0 = ρ
∂VVB

∂t
+ ρ

∮
∂SUB in

uin · nsub dA − ṁentrain, (2.7)

x-momentum: F net
ext,x = ρ

∂

∂t

∫
SUB∪VB

u dV +

∮
∂SUBbody

p nSUB ,x dA +

∮
∂VB

p nVB ,x dA,

(2.8)

energy: Ẇ net
ext =

ρ

2

∂

∂t

∫
SUB∪VB

|u|2 dV +
ρ

2

∮
∂SUB in

|uin|2uin · nsub dA, (2.9)

where F net
ext,x and W net

ext include the combined inertial force and work contributions,
respectively, on the vehicle and vortex wake.

Equations (2.7)–(2.9) correspond to the combined vehicle-wake control volume
SUB ∪ VB shown in figure 3. We now assume that the flow on the surface ∂SUB ∪ ∂VB
is irrotational. This condition is satisfied on ∂SUB due to its displacement by δ from
the vehicle surface. The assumption of irrotational flow outside ∂VB is similar to the
construction of the spherical vortex of Hill (1894) and the Norbury (1973) family of
steady vortex rings. It requires that the vorticity remain compact and that the time
scale of vorticity diffusion remain large relative to the time scale of vortex formation.
The latter condition is satisfied for high-frequency Reynolds numbers of the pulsed
jet, i.e. Reω = ωL2

p/ν � 1, where ω is the frequency of pulsation, Lp is the length of
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the slug of fluid ejected during each pulse, and ν is the kinematic viscosity of the
fluid.

When the assumption of irrotational flow on the surface ∂SUB ∪ ∂VB is satisfied,
the pressure integrals in (2.8) can be rewritten in terms of the velocity potential φ and
the local flow speed |u| by using the unsteady Bernoulli equation (Saffman 1992):

p = ρ

[
C(t) − ∂φ

∂t
− 1

2
|u|2

]
, (2.10)

where C is the time-dependent Bernoulli constant. We assume that ∂SUB ∪ ∂VB forms
a single streamsurface and with a single associated value of the Bernoulli constant.
This assumption is violated at the inlets to the submarine, where flow crosses from
the free stream into the vehicle. However, in practice the inlets represent only 1 % of
the vehicle surface area, and they are confined to narrow streamwise strips at discrete
azimuthal positions (see § 3); hence, the breakdown of the streamsurface assumption
is highly localized. Substituting (2.10) into (2.8) gives

mass: 0 = ρ
∂VVB

∂t
+ ρ

∮
∂SUB in

uin · nsub dA − ṁentrain, (2.11)

x-momentum: F net
ext,x = ρ

∂

∂t

∫
SUB∪VB

u dV − ρ

∮
∂SUBbody

∂φ

∂t
nSUB ,x dA

− ρ

2

∮
∂SUBbody

|u|2 nSUB ,x dA − ρ

∮
∂VB

∂φ

∂t
nVB ,x dA

− ρ

2

∮
∂VB

|u|2 nVB ,x dA, (2.12)

energy: Ẇ net
ext =

ρ

2

∂

∂t

∫
SUB∪VB

|u|2 dV +
ρ

2

∮
∂SUB in

|uin|2uin · nsub dA. (2.13)

While the wake vortex remains attached to the vehicle (i.e. 0 < t < T, F ), we may
approximate the flow speed on ∂SUB ∪ ∂VB as |u| ≈ U∞. This constant speed can be
taken outside the flux integrals in (2.12), which allows them to be rewritten as

−
(

ρ

2
U 2

∞

∮
∂SUBbody

nSUB ,x dA +
ρ

2
U 2

∞

∮
∂VB

nVB ,x dA

)
= 0 (2.14)

since the integral of n dA is zero by definition on a closed surface. The time derivatives
of the velocity potential in (2.12) can be taken outside of their respective derivatives.
We can then make use of the added-mass definition for streamwise motion:

−
∮

∂V

φnx dA = αxxV Ux, (2.15)

where V is the volume enclosed by the surface ∂V , Ux is the speed of the volume
centroid in the streamwise direction and αxx is the added-mass coefficient for
streamwise motion (Saffman 1992). Note that for more general motions, including
combinations of translation and rotation, the full added-mass tensor must be
considered (Batchelor 2000). Applying (2.14) and (2.15) to (2.12) and evaluating
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the time derivatives, we arrive at the following set of equations:

mass: 0 = ρV̇VB + ρ

∮
∂SUB in

uin · nsub dA − ṁentrain, (2.16)

x-momentum: F net
ext,x = ρ

(
1 + αSUB

xx

)
U̇SUB

x VSUB + ρ
∂

∂t

[(
1 + αVB

xx

)
UVB

x VVB

]
, (2.17)

energy: Ẇ net
ext = ρ

[
USUB U̇SUBVSUB + UVB U̇VBVVB +

1

2

(
UVB

)2
V̇VB

]
, (2.18)

where superscripts are used to indicate properties of the vehicle (i.e. SUB ) or wake
(i.e. VB ). Equation (2.18) assumes that the growth rate of the wake vortex is primarily
determined by ambient fluid entrainment, i.e. ρV̇VB ≈ ṁentrain . This is the case for
vortex rings formed with small values of vortex formation time T and for flows with
rapid jet initiation and termination (Dabiri & Gharib 2004; Olcay & Krueger 2008).
In these cases, the second term in (2.13), which can be rewritten by multiplying (2.11)
by U 2

∞, is approximately zero. Since uin · nsub < 0 at the inlets, (2.18) is an overestimate
of Ẇ net

ext if wake vortex growth is not dominated by ambient fluid entrainment.
The form of (2.17) is particularly useful for understanding how near-wake vortex

formation affects propulsion. In the absence of external forces (i.e. Fext,x = 0), the
forward acceleration of the vehicle (and its added-mass, which is proportional to
αSUB

xx ) is wholly dependent on the rearward acceleration of the vortex bubble. Since
the evolution of the vortex bubble is temporally asymmetric relative to the peak vortex
bubble size (cf. figure 2), with maximum flow accelerations occurring during initial
vortex formation, the enhancement of propulsion by vortex formation persists even
when considering time-averaged wake dynamics. In the standard equations of motion
(2.1)–(2.3), this is reflected in a non-zero contribution from the pressure integral over
∂SUBout (Krueger 2001) as well as a wider wake velocity profile.

Entrainment of ambient fluid can be viewed as contributing to propulsion by
enhancing the size and growth rate of the vortex bubble (cf. (2.16)). The vortex added-
mass makes an explicit contribution to propulsion via the added-mass coefficient
αVB

xx in (2.17). To be sure, the wake kinetic energy is also increased due to vortex
formation, since the wake is larger than it would be in the case of an equivalent
steady jet. However, as we will see in the following sections, this added energy cost to
generate flow unsteadiness can be fully compensated by the increased vehicle thrust
under certain conditions. These trade-offs are captured by the propulsive efficiency,
which can be defined in general as

η =
〈F net

ext,xUSUB〉
〈Ẇ net

ext 〉
, (2.19)

where Ẇ net
ext is presently taken as the shaft power delivered to the vehicle and the angle

brackets denote time averages over the duration T of vortex formation. Substituting
(2.17) and (2.18) into (2.19) gives

η =

〈{(
1 + αSUB

xx

)
U̇SUB

x VSUB +
∂

∂t
[(1 + αVB

xx )UVB
x VVB ]

}
USUB

〉
〈[

USUB U̇SUBVSUB + UVB U̇VBVVB +
1

2
(UVB )2V̇VB

]〉 . (2.20)

Equation (2.20) represents the most general expression for the efficiency of unsteady
propulsion, subject to the aforementioned assumptions used in its derivation. When
vortex formation occurs at a sufficiently high frequency, the mass of the vehicle acts
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Figure 4. Froude (ηf , solid curve) and rocket (ηr , dashed curve) efficiencies as a function

of the unsteady efficiency (η) for αVB
xx = 1/2.

as a low-pass filter on its dynamics, resulting in a quasi-steady forward motion. In
this case, U̇SUB ≈ 0 and (2.20) can be further reduced to

η ≈

〈
∂

∂t

[(
1 + αVB

xx

)
UVBVVB

]
USUB

〉
〈

UVB U̇VBVVB +
1

2
(UVB )2V̇VB

〉 . (2.21)

In the limit of quasi-steady flow, the time derivative of a given quantity ξ in (2.21)
can be approximated as ∂ξ/∂t = fpξ (T ), where fp is the frequency of jet pulsing
and ξ (T ) is the value of the property ξ when vortex formation is complete. Also, the
vehicle and wake vortex velocities can be approximated as U∞ and Uw , respectively.
These simplifications result in an expression that is only dependent on the added-mass
coefficient and the velocity ratio Uw/U∞:

η ≈ 2

3

(
1 + αVB

xx

)U∞

Uw

. (2.22)

Figure 4 plots the relationship between this quasi-steady version of the efficiency
metric derived presently and the Froude and rocket efficiencies given in (1.1) and
(1.2), respectively. We note that all three of the efficiency definitions coincide at η = 0
and η = 1 for αVB

xx = 1/2, which corresponds to spherical wake vortex formation. In
general, however, the upper limits of the three definitions do not coincide, reflecting
the different assumptions made in deriving each one.

The analytical model developed here motivates our subsequent focus on empirical
measurements of vortex entrainment and added-mass dynamics in the near-wake of
a self-propelled vehicle. To enable direct comparisons with steady propulsion, we
will make use of the standard efficiency definitions (e.g. (1.1)), while using the new
relations derived from this analytical model to identify the relative contributions of
vortex entrainment and added-mass to unsteady propulsion.

3. Vehicle design
3.1. Vehicle configuration and components

A schematic diagram of the underwater vehicle studied in experiments is shown
in figure 5. The vehicle is 102.3 cm long with a maximum diameter of 15.2 cm. Its
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Figure 5. Schematic diagram of vehicle components including horizontal traverse.
Dimensions are in cm.

profile was inspired by a conventional submarine design, but no attempt was made
to optimize the hydrodynamic characteristics of the vehicle. Instead, priority was
given to designing a vehicle that enables both steady- and pulsed-jet propulsion with
minimal changes to the configuration, so that the relative performance of the vehicle
in both modes can be directly compared. The design features that accomplish steady
and unsteady propulsion are described in detail in § 3.2.

The primary components of the vehicle are an anterior, water-flooded nose cone,
waterproof motor housing with attached hydrofoil support strut, water-flooded inlet
housing and a posterior exit nozzle connected to the inlet housing. Each of these
components was constructed from glass-reinforced plastic with a wall thickness of
0.3 cm. The nose cone serves as a static ballast to reduce the natural positive buoyancy
of the vehicle. Remaining vertical loads due to deviation from the trim condition are
taken by the bearings that connect the vehicle to the water tank (see below).

The waterproof motor housing contains a 2 hp DC motor (AstroFlight Cobalt
60) that drives the vehicle propeller and, where applicable, the pulsed-jet mechanism
described in the next section. The voltage range for the motor is 24–36 V with
maximum continuous current of 35 A. Electrical power is supplied to the motor from
an external power supply (Agilent 6674A) via a flexible cable that passes through the
hydrofoil support strut. The cable is significantly longer than the distance of vehicle
travel in the water tank (≈20 m), so that it does not interfere with the self-propulsion
of the vehicle. A previous design iteration utilized onboard power from a sealed lead
acid battery; however, it was found that the voltage across the motor decayed too
rapidly to effectively characterize the vehicle performance in repeated experiments.
A companion cable transmits motor speed data via an optical tachometer (Monarch
Instruments) in the motor housing that continuously scans the motor shaft. As a
practical matter, a third cable is connected to a moisture sensor (Watchdog) in the
motor housing in order to detect leaks.

The motor throttle is regulated by a speed controller (AstroFlight) connected to
the motor. Communication with the speed controller is achieved through a radio-
frequency receiver (Polk’s Hobby Seeker 6). The current drawn by the motor is
measured via a current clamp (Fluke), which outputs 1 mV per input ampere of
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current. The measurement accuracy of the device is ±2 % of the reading ±0.5A.
During self-propulsion, the motor typically draws 12 A at 37 V. A large fraction of
this power is dissipated within the long power transmission cables that connect the
vehicle to external power. However, as mentioned above, the emphasis of this study
is on the relative performance of the steady and unsteady propulsion modes. Since
the system inefficiencies are equally applied to both modes of propulsion (cf. § 3.2),
they are deemed acceptable in this study.

A symmetric vertical hydrofoil with approximately 13 % thickness (relative to chord
length) is connected to the motor housing by epoxy, forming a waterproof seal. In
addition to providing a conduit for power and data from the motor housing, the
hydrofoil provides the structural connection between the vehicle and a traverse that
rolls along the horizontal rails of the water tank. Hence, the vehicle is constrained
to unidirectional motion parallel to the rails of the water tank. Visual inspection
confirmed that no significant free-surface waves were generated by the hydrofoil or
the proximal portions of the vehicle hull.

The flow inlets to the vehicle are located on a housing attached directly downstream
from the motor housing. Flow enters the inlet housing through one to three rectangular
slots equally spaced around the azimuth of the housing. Each slot is 15.2 × 2.5 cm
and aligned with the flow direction. The cross-stream edges of the slots are rounded
to promote smooth inlet flow. Fluid is drawn into the inlet housing by a fixed pitch,
7.6 cm diameter, 7-blade, brass skew propeller that is connected to the motor at a 1:1
gear ratio. The propeller is located downstream from the inlet slots at the junction
between the inlet housing and the exit nozzle. The specific propeller used in this
study is not optimized for operation in the shrouded configuration. It was selected
solely due to its ability to generate sufficient thrust for self-propulsion in the range
of vehicle speeds studied here. As with the power transmission described above, any
propeller inefficiency was deemed acceptable since it was consistent for the steady
and unsteady propulsion modes and therefore did not affect the relative comparisons
between modes.

The exit nozzle diameter (Dout ) contracts from 15.2 cm to 5.1 cm over its 28.3 cm
length. Its shape is derived from a sixth-order polynomial curve fit. Flow visualization
using tufts and dye confirmed that the flow external to the nozzle remains attached.

The vertical hydrofoil of the vehicle is mounted onto a horizontal traverse,
constructed as an I-beam configuration from anodized aluminium tubing with
5.1 × 12.7 cm rectangular cross-section and 0.3 cm wall thickness. The traverse rests
on four low-friction roller bearing pillow blocks (Lee Linear), which have an average
rolling friction coefficient of 0.004.

3.2. Mechanisms of steady and unsteady propulsion

To modulate the steadiness of the jet efflux, a mechanism was designed to periodically
occlude portions of the slots on the inlet housing. A planetary gear assembly connects
the motor shaft to a hollow cylindrical shell that rotates inside the inlet housing. The
outer surface of the rotating shell is flush with the inner surface of the inlet housing.
The planetary gear assembly reduces the speed of shell rotation by a factor of 5
relative to the motor speed.

The rotating shell itself has a set of open slots around the azimuth; the slot width
determines the solidity of a given shell design. As the shell rotates, the solid portion
of the shell periodically blocks the inlet slots, preventing inlet flow and consequently
throttling the exit flow (figure 6). A 2.5 × 1.7 cm portion of each inlet slot is left
unblocked at all times to avoid cavitation due to the pressure drop that occurs during
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Fluid inlets
OPEN

(a) (b)

Fluid inlets
CLOSED

Figure 6. Principle of operation for unsteady, pulsed-jet configuration. (a) View from aft of
inlet housing. Outer black arcs indicate inlet housing and inner brown arcs indicate rotating
cylindrical shell. Black arrows indicate direction of inner shell rotation. Blue arrows indicate
flow direction (bullseyes are vectors out of the page). (b) Side views of the vehicle corresponding
to stages in (a). Green box indicates open inlet, red X indicates blocked inlet and blue arrows
at the jet exit indicate magnitude of jet efflux.

(a) (b)

Figure 7. Images of cylindrical rotating shells for steady-jet (a) and pulsed-jet (b) vehicle
configurations. Shell diameter is 15.2 cm in each case.

slot blockage. Visual inspection confirmed that this strategy prevented the occurrence
of flow cavitation in the inlet housing.

The solidity of the rotating shell (i.e. the fraction of the shell surface area composed
of solid material) and its rotational speed determine the level of inlet flow blockage
and, by fluid continuity, the level of pulsation of the exit flow. The advantage
of manipulating the flow upstream of the propeller is that the vortical structures
generated in the near-wake do not directly interact with the physical mechanism that
generates unsteady flow. This is in contrast to alternative flow-chopping or nozzle-
blocking schemes that could also be implemented at the nozzle exit, but that can
potentially create unwanted secondary vorticity.

To generate nominally steady flow, a shell design with minimal solidity (<2 %)
was used. This shell consisted of two thin rings at the bases of the cylindrical shell,
connected by three 27 cm × 0.6 cm support spars spaced equally around the azimuth
(figure 7a). Mass was added to the bases of each shell to ensure that the total moment
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of inertia was evenly distributed around the azimuth with a value of 4.6 kg cm2 in
each case. Therefore, the power required to rotate the shell in the steady and unsteady
propulsion modes is kept constant.

In most of the experiments described in this paper, the vehicle was operated using
a single inlet slot at the bottom of the inlet housing. The frequencies of jet pulsation
corresponding to this slot design varied with motor rotation rate (×1/5) from 0 to
13 Hz. Figure 7(b) shows the shell design most commonly used for unsteady propulsion
experiments. The solid portion of the shell subtends 26◦ around the circumference.
This design corresponds to dimensionless vortex ring formation times T̂ = UwT/Dout

between 2.5 and 3.4, with lower values of T̂ occurring at higher motor speeds. This
range of vortex formation times leads to the formation of a single, coherent vortex
ring during each flow pulse (Gharib et al. 1998).

4. Experimental methods
4.1. Test facility

Experiments were conducted in a 40 m long free-surface water tank at the California
Institute of Technology. The tank cross-section is 1.1 m wide and 0.6 m deep. The
vehicle was positioned in the centre of the tank cross-section and its horizontal
traverse was connected to two 3.8 cm diameter rails above the tank on opposite sides.
The rails run the full length of the water tank; therefore, the vehicle was capable of
travelling the full length of the tank in principle. Typically, 5–20 m of vehicle travel
was measured in performance tests. The relatively long length of the tank allowed
the vehicle to achieve a steady-state velocity before each set of measurements was
initiated. A motorized traverse was programmed using proportional-integral control
(LabVIEW 8.5) to follow the vehicle traverse at a specified distance (typically ≈0.5 m)
determined by an infrared distance sensor (Sharp). This traverse was used to carry
auxiliary equipment for power monitoring and flow visualization. Power and data
transmission to the vehicle and auxiliary traverse were accomplished from a stationary
console located at the midpoint of the water tank.

4.2. Planar laser-induced fluorescence measurements

Planar laser-induced fluorescence (PLIF) was used for qualitative visualization of the
near-wake flow in the steady- and pulsed-jet modes. The principal objective of these
measurements and the DPIV measurements described in § 4.3 was to verify that the
pulsed-jet mode does indeed create large-scale coherent vortex rings in the near-wake.
The near-wake of the vehicle was also studied in the steady-jet mode to verify that
the jet resembled a conventional round turbulent jet without any coherent large-scale
vortex formation that could be attributed to flow pulsation at the shell rotation
frequency or its harmonics. For these measurements, the vehicle was held stationary
by collar clamps placed fore and aft of each of the pillow blocks connecting the
traverse to the water tank rails (figure 8).

Rhodamine 6G, a fluorescent dye with maximum absorption near 530 nm and
emission near 555 nm, was manually injected into a slot of the inlet housing (i.e.
the portion that remains continuously unblocked, cf. § 3.2) using a syringe connected
to Tygon tubing. Dye was continuously injected with negligible momentum flux for
the duration of each test. The dye was excited at 532 nm by two Nd:YAG lasers
(New Wave) with a power rating of 30 mJ pulse−1. The output laser beam was
collimated into a 2 mm thin sheet by a cylindrical lens and then re-directed 90◦ by a
mirror to illuminate the symmetry plane of the near-wake. This laser path involved



18 L. A. Ruiz, R. W. Whittlesey and J. O. Dabiri

Collar clamp Mirror

Cylindrical lens
Laser

Auxiliary
traverse

Figure 8. Schematic diagram of the set-up for near-wake flow visualization of the stationary
vehicle. Laser sheet is illustrated in green.

the transmission of the laser beam through the free surface of the water. Since the
vehicle was held stationary, flow disturbances at the free surface were negligible.
Positively buoyant particles at the free surface did occasionally reflect incident laser
light, causing streakiness of the laser sheet in the field of view. However, this artefact
did not affect interpretation of the PLIF images or processing of DPIV data. The
laser and associated optics were held on the auxiliary traverse located on the water
tank rails downstream from the vehicle.

A 60 mm lens was used in conjunction with a 1024 × 1024 CMOS video camera
(Photron APX-RS) for flow imaging. A band-pass filter (Lee Filter) allowing
transmission between 550 and 700 nm was placed over the camera lens to block
extraneous Mie scattering from particulates in the water. The field of view was 3 jet
diameters in the axial direction and 1.3 jet diameters in the radial direction in each
test.

Image capture was triggered by a 5 V TTL signal from the laser upon each firing
of the Q-switch. Firing of the Q-switch and subsequent image acquisition could not
be synchronized with the phase of rotation of the cylindrical shell due to technical
limitations of the experiment. In tests of unsteady propulsion, the phase could be
inferred a posteriori based on the size of the forming vortex ring in the near-wake.
This could not be accomplished in the case of steady propulsion, since the near-wake
did not exhibit a well-defined periodicity related to the shell rotation. For the purpose
of the PLIF measurements, namely the qualitative validation of near-wake structure,
the lack of a priori phase information was inconsequential.

4.3. DPIV measurements

A more quantitative evaluation of the near-wake of the steady- and pulsed-jet modes
was provided by DPIV measurements. For these measurements, the vehicle was again
held in a stationary position, and the laser beam path was as illustrated in figure 8.
Krueger et al. (2006) have previously conducted DPIV studies of vortex ring formation
in a co-flow, a process analogous to measurements on a forward-translating vehicle.
They observed that the external flow reduces the maximum size of forming vortex
rings, although the effect is modest for U∞/Uw < 0.5. Both the steady- and pulsed-jet
flows studied in this paper remain in the range U∞/Uw < 0.5. Therefore, we do not
expect the qualitative flow structure to change between stationary and self-propelled
tests. The quantitative differences that occur due to forward translation of the vehicle
will be evaluated using LDV measurements of the moving vehicle (§ 4.4).
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The water tank was seeded with neutrally buoyant, silver-coated, hollow
glass spheres with a nominal diameter of 13 µm (Potters Industries). For DPIV
measurements, the two lasers were fired with a relative time delay of 5.3–21.2 ms,
with smaller time delays at higher jet speeds to limit the displacement of particles
between successive images. A 60 mm lens was typically used in steady-jet tests, while
both 60 and 105 mm lenses were used for pulsed-jet tests in order to increase the
spatial resolution of the measured near-wake vortex rings.

To limit out-of-plane flow due to swirl created by the propeller, a honeycomb
screen was placed in the exit of the jet nozzle. The flow straightener was 2.0 in. in
length and 2.0 in. in diameter, with a 0.125 in. diameter cell size. Inspection of the raw
DPIV vector plots confirmed that the flow straightener effectively reduced the out-
of-plane flow and associated particle image loss. During self-propulsion experiments,
the honeycomb was removed to avoid the associated pressure loss from flow blockage
and to increase the overall vehicle performance. The removal of the honeycomb led to
additional swirl in the wake due to propeller rotation. Previous research on post-swirl
devices predicts a reduction of 1–9 % in propulsive efficiency due to the presence
of this swirl (Breslin & Andersen 1996). However, this loss was smaller than that
associated with the honeycomb.

Particle images were processed using an in-house DPIV code. Steady-jet
measurements were post-processed using a 32 × 32 pixel interrogation window and a
16 × 16 pixel step size. Pulsed-jet measurements collected using a 105 mm lens were
post-processed using a 64 × 64 pixel interrogation window and a 32 × 32 pixel step
size. The field of view encompassed by these unsteady flow measurements included
only the top half of the near-wake at higher spatial resolution. Once it was evident
that the pulsed-jet configuration produced vortex ring roll-up in the near-wake as
designed, the 60 mm lens and associated DPIV processing parameters were used to
verify the axial symmetry of the vortex rings by measuring the full wake width.

4.4. LDV measurements

LDV was used to measure the mean velocity profiles in the near-wake during steady
and unsteady self-propulsion. Since LDV is a pointwise technique, the spatial velocity
profiles were constructed from repeated tests of the vehicle, with a subset of the full
profile collected during each run.

A one-component velocimeter (Measurement Science Enterprise miniLDV) was
used in the experiments. The system resolves flow speeds from 1 mm s−1 to 300 m s−1

with a measurement uncertainty of ±0.1 %. The raw signal-to-noise ratio (S:N) of the
measurements was monitored in real-time, and only data with S:N > 4 were accepted.
An aluminium probe strut was designed to mount the LDV at the rear of the vehicle
traverse, as shown in figure 9. The probe strut was attached to a 100 mm vertical
translation stage, thus allowing the LDV probe volume to translate in the vertical
direction across the nozzle exit. The vertical stage was mounted to a horizontal
100 mm stage through a 90◦ bracket plate. This second translation stage allowed
for movement of the probe volume in the horizontal direction. The scanning paths
of both translation stages were controlled by commercial software (Measurement
Science Enterprise). For the majority of measurements described in this paper, the
LDV probe volume was located 0.25 jet diameters downstream from the nozzle exit
plane. Measurements at this axial location were found to be representative of the
near-wake velocity profiles.

LDV measurement data were transferred in real-time to a PC located on the
auxiliary traverse, which automatically followed behind the vehicle at a fixed distance
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Figure 9. (Colour online) Schematic diagram of the LDV assembly mounted onto the vehicle
traverse. Vertical LDV traverse is shown in the extreme low position. Dimensions are in cm.

(cf. § 4.1). Post-processing to construct full spatial velocity profiles from the samples
collected during each vehicle run was accomplished manually.

4.5. Hydrodynamic drag measurements

Measurements of the hydrodynamic drag on the underwater vehicle were conducted
to support subsequent calculations of propulsive efficiency (§ 4.6). Force measurements
were obtained using a load cell (Omega) with 22.2 N maximum capacity. The load
cell was used in compression, for which the measurement accuracy is ±0.15 % of the
full scale.

The maximum output of the load cell without amplification is 10 mV. This signal
was amplified using a signal conditioner (Omega Bridgesensor) with a frequency
response of 2 kHz and gain between 40 and 250. The load cell was calibrated under
compression by applying loads across the full range of sensor capacity; the linearity
of the output signal with input load was verified.

The load cell was mounted between the auxiliary motorized traverse and the vehicle
traverse using a swivel-bearing design to eliminate off-axis loads. The auxiliary traverse
was programmed to travel forward at a series of constant speeds between 10 and
60 cm s−1, pushing the vehicle traverse ahead of it. Measurements were conducted
with and without the vehicle attached to its traverse in order to distinguish between
hydrodynamic drag and resistance due to traverse friction. The measured traverse
friction was subtracted from the total resistance at the load cell to determine the
hydrodynamic drag on the vehicle. The resulting measurements of drag coefficient
versus Reynolds number are plotted in figure 10.

Since the hydrodynamic drag and traverse friction were comparable in magnitude,
the uncertainty of the hydrodynamic drag computed by the subtraction technique
described above was of the same order of magnitude as the drag itself. The
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Figure 10. Vehicle hydrodynamic drag versus Reynolds number. Drag coefficients are
computed based on frontal area (solid circles) and wetted surface area (open circles). Reynolds
number is calculated using the vehicle length. Measurement uncertainty is of the same order
of magnitude as the data points due to the subtraction technique used to compute the vehicle
drag (see text).

trend in drag coefficient with increasing Reynolds number should therefore be
viewed cautiously, especially in the light of its difference from the trends found
in measurements of canonical shapes (Schlichting & Gersten 2000). Nonetheless,
the magnitude of the measured drag coefficients is consistent with published
data for similarly shaped bodies in this range of Reynolds numbers (Hoerner
1965). Furthermore, we will show in § 5.2 that the conclusions garnered from the
propulsive efficiency calculation based on hydrodynamic drag are supported by
Froude efficiency measurements based on (1.1) and the unsteady efficiency model in
(2.21).

4.6. Vehicle performance test protocols and metrics

Propulsive performance tests were conducted for three vehicle configurations: (i)
steady propulsion in the absence of a cylindrical rotating shell in the inlet housing,
(ii) steady propulsion using the low-solidity rotating shell in the inlet housing (i.e.
figure 7a) and (iii) unsteady propulsion using the cylindrical shell shown in figure 7(b).
At least 15 tests of the vehicle in each configuration were conducted in order to
construct the full spatial velocity profiles across the nozzle exit of the moving vehicle
using LDV. The maximum vehicle speed in these tests was 0.4 m s−1. To access higher
vehicle speeds, approaching 0.6 m s−1, a second set of experiments was conducted
using a new version of the same motor (AstroFlight Cobalt 60) at higher shaft
speeds. The higher speed tests were conducted using only configurations (i) and (iii)
described above. Twelve tests of the vehicle in each of these configurations were
conducted.

Ambient fluid entrainment in the near-wake was quantified by an entrainment ratio
defined as

ζ =
Q

Qout

=

∫ 2π

0

∫ Rout

0
uout,x(r)r dr dθ

Uw Aout

, (4.1)

where Rout is the radius of the nozzle exit and θ is the azimuth angle. An entrainment
ratio of 1 corresponds to a top-hat jet efflux with no ambient fluid entrainment.
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The propulsive efficiency of the vehicle was measured using both (1.1) and a
drag-based hydrodynamic efficiency:

ηh =
FDUSUB

FDUSUB + (1/2)ρAoutUw(Uw − U∞)2
, (4.2)

where FD is the drag on the vehicle. This expression for propulsive efficiency considers
the ‘useful work’ to be that required to overcome hydrodynamic drag. The inefficiency
of propulsion is assigned to the excess kinetic energy in the wake, which is proportional
to (Uw − U∞)2.

Finally, the total electrical power consumed by the vehicle in each test was quantified
by a power consumption coefficient:

Cp =
IV

1
2
ρ Aout U∞

3
, (4.3)

where I is the current drawn by the motor and V is the voltage across the motor.

4.7. Motor calibrations

Most of the results presented in § 5 are given as a function of motor speed. This
choice of independent variable allows for the most direct comparison between the
steady and unsteady propulsion modes, since the motor is the consistent input in
each case. In addition, the motor speed provides an implicit characterization of the
unsteady jet pulsing frequency. Since the cylindrical rotating shell is geared down
from the motor at a fixed 1:5 ratio, the jet pulsing frequency (in Hz) can be deduced
from the motor speed (in r.p.m.) by dividing the latter by 60 × 5 = 300. Finally, we
note that the motor speed is measured with much smaller uncertainty (<1 %) than
alternative choices of independent variable such as the vehicle or wake speed.

However, to enable interpretation of the results in terms of these alternative
independent variables, figure 11 plots the vehicle speed, wake speed and vortex
formation time versus motor speed for the self-propelled vehicle tests. The wake
speed and vortex formation time were calculated based on the centreline velocity at a
distance 0.25 jet diameters from the nozzle exit plane. The jet efflux exhibited a nearly
top-hat velocity profile across the nozzle exit at this distance, making the centreline
velocity representative of the average wake velocity. The measurement uncertainty in
the vehicle velocity was approximately 15 %, and the turbulence fluctuations in the
average wake speed varied from 16 % in the low-speed (i.e. motor 1), steady-jet tests
to 30 % in the high-speed (i.e. motor 2), unsteady-jet tests.

5. Results
5.1. Stationary vehicle near-wake

Figure 12 shows representative images of the near-wake of the stationary
vehicle with steady (figure 12a) and unsteady (figure 12b) cylindrical shell
designs rotating inside the inlet housing. The near-wake of the steady flow is
characterized by a slowly growing shear layer that transitions approximately one
jet diameter downstream into randomly fluctuating, small-scale vortices. This is
consistent with previous observations of turbulent round jets (Hussain & Husain
1989).

In contrast to the steady-jet wake, the near-wake of the unsteady propulsor is
characterized by more rapid shear layer growth and the roll-up of larger-scale coherent
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Figure 11. (a) Vehicle speed versus motor speed. (b) Wake speed versus motor speed.
(c) Vortex formation time versus motor speed. Solid symbols indicate unsteady propulsor
and open symbols indicate steady propulsor. Measurement uncertainty in the vehicle velocity
was approximately 15 % (indicated by vertical solid lines), and the turbulence fluctuations in
the average wake speed varied from 16 % in the low-speed (i.e. motor 1), steady-jet tests to
30 % in the high-speed (i.e. motor 2), unsteady-jet tests (indicated by vertical dashed lines for
representative cases).

vortex rings at a fixed temporal frequency. The PLIF images indicate a wider near-
wake in the unsteady case, and correspondingly greater ambient fluid entrainment, as
evidenced by the significant intrusions of undyed ambient fluid (black) into the dyed
nozzle efflux (white).

These qualitative observations were confirmed by DPIV measurements of the
stationary vehicle. Figure 13 shows representative images of the vehicle near-wake in



24 L. A. Ruiz, R. W. Whittlesey and J. O. Dabiri

Vortex rings

(a) (b)

Figure 12. PLIF images of the near-wake of the vehicle during steady (a) and unsteady
(b) propulsion. Reynolds number based on jet diameter is approximately 6000 in each case.
Pulsing frequency of unsteady jet is approximately 2.4 Hz. Jet diameter is 5.1 cm and nozzle
exit plane is at the left edge of the field of view.

steady (figure 13a, c) and unsteady (figure 13b, d ) propulsion. In agreement with the
PLIF visualizations, the steady configuration creates a conventional turbulent jet with
relatively uniform speeds in the core flow. In contrast, the unsteady configuration
generates discrete vortex rings in the near-wake.

Elevated levels of ambient fluid entrainment are apparent in the increased radial
component of velocity vectors in the near-wake of the unsteady propulsor relative
to the steady jet. In addition, the magnitude of the near-wake vorticity is increased
by over 50 % in the unsteady configuration relative to the steady propulsor. These
and other differences in near-wake kinematics are explored in greater detail in the
following sections, which focus on the self-propelled vehicle.

5.2. Self-propelled vehicle near-wake

5.2.1. Ambient fluid entrainment

Figure 14 plots the streamwise velocity profile outside the core flow at 0.25 diameters
downstream from the nozzle exit plane of the forward-moving, self-propelled vehicle.
Data are shown for two motor speeds of the steady propulsor without the rotating
cylindrical shell (2900 and 3160 r.p.m., corresponding to Uw = 1.54 and 1.57 m s−1,
respectively) and for three motor speeds of the unsteady propulsor (2750, 2970 and
3200 r.p.m., corresponding to Uw = 1.42, 1.49 and 1.58 m s−1, respectively). The steady
propulsor was unable to generate sufficient thrust for self-propulsion at motor speeds
comparable to the lowest-speed unsteady propulsor test.

Ambient fluid entrainment manifests itself by contributing to a wider wake profile,
i.e. larger streamwise velocities outside the core flow. Therefore, the velocity profiles
in figure 14 indicate elevated ambient fluid entrainment in the unsteady propulsor
near-wake relative to the steady propulsor.

Comparison of the wake velocity profile of the self-propelled, steady propulsor with
the wake of the same vehicle in a stationary configuration (cf. figure 13) indicates that
the effect of ambient co-flow (in the vehicle reference frame) is minimal. In contrast,
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Figure 13. DPIV velocity (a, b) and vorticity (c, d ) fields from measurements of the near-wake
of the vehicle during steady (a, c) and unsteady (b, d ) propulsion. Reynolds number based
on jet diameter is approximately 6000 in each case. Pulsing frequency of unsteady jet is
approximately 2.4 Hz. The position and radial extent of the nozzle exit is indicated by the
vertical black line in each panel. Colour bars on the right correspond to both panels. Field of
view is one jet diameter downstream for velocity fields and two jet diameters downstream for
vorticity fields.

entrainment in the near-wake of the unsteady propulsor is reduced by the ambient co-
flow around the self-propelled vehicle. This observation is consistent with expectations
of reduced wake vortex size and strength due to the reduction of shear-layer strength
by the ambient co-flow (Krueger et al. 2006).

The velocity measurement near r/Rout = 1 for the unsteady, medium-speed case in
figure 14 is an outlier. Although the origin of the error was not identified conclusively,
it appears to be due to a discrepancy between the expected and actual position of
the LDV probe in the radial direction during the measurement. The data point is
consistent with a lower value of r/Rout . As described below, it does not obscure the
conclusions derived from the spatially integrated entrainment measurements.
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Figure 14. Streamwise velocity profiles outside the jet core flow. Solid symbols connected
by solid lines indicate unsteady propulsor profiles. Open symbols connected by dashed lines
indicate steady propulsor profiles. Data are shown for two motor speeds of the steady propulsor
(2900 and 3160 r.p.m., with Uw = 1.54 and 1.57 m s−1, respectively) and for three motor speeds
of the unsteady propulsor (2750, 2970 and 3200 r.p.m., with Uw = 1.42, 1.49 and 1.58m s−1,
respectively). Data from 5 s averages of DPIV measurements at the same downstream location
(cf. figure 13) of the stationary steady and unsteady propulsor are also included for comparison.
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Figure 15. Entrainment ratio versus motor speed for the steady propulsor without rotating
cylindrical shell (open symbols connected by the dashed line) and the unsteady propulsor
(solid symbols connected by the solid line).

The trends in figure 14 are clarified by computing the entrainment ratio ζ (cf.
equation (4.1)) for each case. Figure 15 shows that the entrainment ratio decreases with
increasing motor speeds. In the unsteady jet, the vortex formation time is inversely
proportional to motor speed (figure 11c). Therefore, it appears that entrainment
decreases with decreasing vortex formation time. This conclusion is distinct from
previous measurements of entrainment by isolated vortex rings, wherein larger vortex
rings (i.e. those created with larger formation time) saturate during entrainment
and subsequently exhibit slower growth (Dabiri & Gharib 2004; Olcay & Krueger
2008).

Before pursuing this apparent discrepancy further, two important caveats should
be noted. First, the present measurements capture the initial advective entrainment
that occurs during vortex roll-up. As delineated by Maxworthy (1972), this process of
advective entrainment is more rapid than the subsequent diffusive entrainment by fully
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formed, steady vortex rings. It is plausible that there is also a different dependence
of advective entrainment on vortex formation time than that of the subsequent
diffusive entrainment. Second, the present measurements were taken at a single
downstream position, whereas the formation length scale of the vortices – and, hence,
the downstream position where entrainment occurs – can vary with vortex formation
time (Williamson 1996; Bohl & Koochesfahani 2009). A definitive assessment of the
dependence of entrainment on vortex formation time would therefore require velocity
profile measurements both in the near-wake and at positions further downstream
from the nozzle exit. Although such measurements were beyond the scope of the
present experiments, they will be needed to reconcile the present near-wake results
with previous studies of isolated vortex rings.

In each case, the near-wake entrainment of the pulsed-jet exceeds that of the
steady-jet. At the downstream location studied, the difference in entrainment ratio
approaches 10 % at higher motor speeds. This difference is significant given that
measurement occurred just 0.25 diameters from the nozzle exit plane. The absolute
difference in entrainment will increase further with downstream distance as the shear
layers grow larger (Hussain & Husain 1989).

The effect that the near-wake entrainment – and vortex formation more generally –
has on vehicle performance is described in the following section.

5.2.2. Vehicle performance

Figure 16(a) plots the measured Froude efficiency versus motor speed for the
various steady and unsteady self-propelled vehicle configurations. The data are
normalized by the corresponding Froude efficiency of the steady vehicle in the
absence of the cylindrical rotating shell (denoted by ηSWOS

f ); values greater than one
indicate enhanced propulsion, whereas values less than one correspond to reduced
performance. The discrete motor speeds at which ηSWOS

f was measured were linearly
interpolated in a least-squares fit to compute the normalized quantities at other motor
speeds in the plot.

At low motor speeds, steady-jet propulsion created by the rotating cylindrical
shell is inferior to steady propulsion in the absence of the rotating shell. This result
likely reflects the reduced quality of the inflow to the propeller created by the
low-solidity rotating shell. Since there was no compensatory benefit in terms of near-
wake vortex formation, the overall performance was reduced. The performance of
the steady jet with rotating shell does improve with increasing motor speed, but it
does not exceed the baseline performance of the steady jet without rotating shell.
This result is expected given that the steady-jet propulsion systems are functionally
equivalent.

In contrast, the unsteady propulsor consistently outperforms the baseline steady
propulsor in terms of Froude efficiency. Increases in efficiency exceeding 40 % are
achieved, with modest decreases in the propulsion enhancement at higher motor
speeds. The performance at higher motor speeds is consistent with the previous
observations that vortex formation time and near-wake entrainment decrease with
increasing motor speed (figures 11c and 15).

The trends in Froude efficiency are supported by similar results based on the
hydrodynamic efficiency definition in (4.2), plotted in figure 16(b). In this case, the
magnitude of vortex enhancement of propulsion is even greater, exceeding 70 %
improvement over baseline steady propulsion. Again, modest decreases in vortex
enhancement are observed at higher motor speeds, reflecting the formation of smaller
vortex rings in that regime.
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Figure 16. (a) Normalized Froude efficiency versus motor speed. (b) Normalized drag-based
hydrodynamic efficiency versus motor speed. (c) Normalized power consumption coefficient
versus motor speed. Solid symbols indicate unsteady propulsor and open symbols indicate
steady propulsor. Normalizations are based on vehicle tests of steady propulsion without a
cylindrical rotating shell, denoted by the superscript SWOS.

To determine whether the enhancement of propulsion by near-wake vortex
formation compensates for the added energy required to create flow unsteadiness,
figure 16(c) plots the normalized power consumption coefficient. Values less than
one indicate net energy savings by the unsteady propulsor relative to the baseline
steady propulsor. The results indicate that at sufficiently high motor speeds, near-
wake vortex formation reduces the net energy required for propulsion by as
much as 30 % compared to the baseline steady propulsor in these tests. Since
vortex ring entrainment becomes less significant at higher motor speeds, we can
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attribute the improved performance at higher motor speeds to the more rapid
downstream acceleration of the near-wake vortices, i.e. the added-mass effect and
associated near-wake pressure elevation described in § 2. In addition, the vehicle
itself exhibits relatively lower resistance to forward motion at higher speeds
(figure 10).

6. Discussion
This paper has demonstrated an experimental platform to directly compare steady

and unsteady propulsion of a self-propelled vehicle. An analytical model of the near-
wake created by the unsteady vehicle predicted that vortex formation in the near-
wake – specifically, ambient fluid entrainment and added-mass dynamics of the
accelerated flow – could potentially enhance propulsion relative to a conventional,
steady-jet system. Measurements of the near-wake confirmed the existence of
large-scale vortex roll-up by the unsteady propulsor and elevated entrainment of
ambient fluid. These processes led to improvements in Froude efficiency of up to
40 % and increases in a drag-based hydrodynamic efficiency metric of over 70 %
relative to the baseline steady propulsor configuration.

A unique result of this study is the demonstration of a net reduction in power
consumption of the unsteady propulsor, accounting for the power required to
create flow unsteadiness. This result is important for establishing the viability of
vortex-enhanced propulsion in practice. Previous attempts to improve propulsion by
unsteady manipulation of the mean flow (e.g. biomimetic propulsion) have often
neglected to assess the net power requirements relative to conventional steady
propulsion.

It is important to draw a distinction between the results of this study that are
specific to the vehicle platform studied presently and those results that are general
to vortex-enhanced propulsion. As mentioned in § 3, the vehicle design implemented
here has not been optimized for hydrodynamic efficiency in an absolute sense. The
flow-chopping mechanism introduces hydrodynamic losses within the inlet housing,
and the propeller used in the experiments was not tuned to the unsteady inflow
conditions. These losses are evident from the fact that the steady propulsor with
rotating shell in the inlet housing performed poorly relative to the steady propulsor
in the absence of the rotating shell (figure 16a, b), despite the fact that the
rotating shell possessed negligible solidity. The enhancement in performance of the
unsteady propulsor was sufficient to compensate for inefficiencies of the inlet flow
while still improving propulsion relative to the baseline steady propulsor without
the rotating shell. Nonetheless, the absolute values of the Froude and drag-based
hydrodynamic efficiency did not exceed 50 and 65 %, respectively, in the unsteady
propulsor.

Despite these shortcomings of the vehicle design, the results make clear the potential
benefits of vortex-enhanced propulsion. The existence of the two primary mechanisms
of enhanced propulsion – namely (i) ambient fluid entrainment by the forming vortex
ring and (ii) downstream acceleration of the vortex ring, its entrained fluid mass
and their added-mass – is not dependent on the specific vehicle design studied here.
Future work will seek to identify more efficient mechanisms to promote the formation
and acceleration of coherent vortices in the near-wake of the propulsor. Several
candidates are found in the existing literature, including modifications of nozzle
ellipticity (Hussain & Husain 1989) and periodic excitation of the boundary layers at
the nozzle exit (Reynolds et al. 2003). These strategies can potentially be achieved by
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active or passive (i.e. zero net energy input) mechanisms. Passive mechanisms present
the greatest potential for net power reduction in engineered propulsion systems, and
can also facilitate retrofitting of existing propulsion systems to take advantage of the
processes described in this paper.

The parameter space of vortex formation time presents an additional opportunity
to further amplify vortex-enhanced propulsion. In the present experiments, the vortex
formation time and, hence, the size of the wake vortices, was dictated by the slot
geometry and motor speed. The generated vortex rings did not approach the maximum
vortex size observed in previous studies of stationary propulsors, for which T̂ ≈ 4
(Gharib et al. 1998). It is of interest to determine how vortex-enhanced propulsion is
affected for T̂ > 4. Previous studies suggest that an optimum vortex formation time
may exist for propulsion (Linden & Turner 2004; Krueger & Gharib 2005; Krieg &
Mohseni 2008; Dabiri 2009).

An aspect of propulsion that has only been addressed indirectly here is that of the
pressure in the near-wake. The derivation in § 2 indicates that a principal origin of
vortex-enhanced propulsion is the elevated near-wake pressure. We have shown that
this pressure can be understood in terms of vortex added-mass; however, it would be
illuminating to examine the pressure field directly. Pressure measurements would also
be useful to test the various assumptions used to construct the analytical model in
§ 2. Such an endeavour was beyond the scope of this study, but in practice could be
accomplished by implementing surface pressure probes in the nozzle if the probes and
auxiliary equipment could be made to move with the vehicle. A more straightforward
approach may be to simulate these processes numerically. In that case, the primary
challenges will be simulating self-propulsion and approaching the Reynolds numbers
of the experiments (Re ≈ 105).

Much of the inspiration for new unsteady propulsion approaches has come from
biology in recent years. The analytical model developed in § 2 can potentially be
extended to support studies of biological propulsion, where the formation of near-
wake vortices is ubiquitous. Although it is unclear whether propulsion in the absence
of vorticity might be preferable (it is feasible, cf. Kanso et al. 2005), we suggest
that biology may exploit the unsteady mechanisms described in this paper to take
advantage of the vortices that are inevitably created during locomotion in real
fluids.

This research is supported by the Office of Naval Research awards N000140810918
and N000141010137 to J.O.D.
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