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1 Introduction 
The vertical axis wind turbine was “re-invented” in 1970 by Peter South and Raj Rangi [1] of the 

Canadian National Research Council, Ottawa, where much development was carried out.  Considerable 

development was also carried out at Sandia National Laboratories, New Mexico, especially into the 

structural dynamics of the curved Darrieus  rotor [2, 3].  It was determined that the rotating frame effects 

of Coriolis action, rotational softening, and pretensioning played important roles. 

 

The structural analysis at Sandia made use of the finite element code, NASTRAN, which at that time ran 

on main frame computers only and for which the cost was considerable.  When personal computers 

became available later in the 1980s, it was natural to consider duplicating the capabilities of NASTRAN 

on the PC [4].  There were several challenges to this task: the RAM storage of early PCs was extremely 

limited (typically less than 1 MB); and the processors were several orders of magnitude slower than 

modern machines.  For those reasons it was decided to use a modal approach to reduce the number of 

degrees of freedom.  Such a step would not be necessary nowadays (the larger number of physical degrees 

of freedom could be accommodated) but the modal approach gives useful insight into the operating 

natural modes, and the aerodynamic loading and response. The theoretical background of this approach is 

described in [5]. 

1.1 Objectives 
The objective of this document is to present data validating the predictions of the PC-based codes.  This is 

done by comparisons with other codes and by comparison with field data. 

2 Outline of codes 
There are two principal codes: the EOLE code for extracting the operating natural frequencies and mode 

shapes, and the Forced Response (FR) code for determining the response to aerodynamic harmonic 

loading.  Both codes make use of a shared finite element model of the rotor using beam elements only.  

The analysis is carried out relative to the rotating frame and assumes that the elastic restraints to this 

frame are axisymmetric. The relationship of the codes with their respective input and output files is 

shown in Figure 1. 
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Figure 1. Flowchart of the EOLE suite of codes 

3 Comparison with Sandia’s codes 
In 1993 the staff at Sandia National Laboratories carried out a comparison of the operating natural 

frequencies obtained for the Flowind 3-bladed, 23-m Darrieus rotor using both their own Nastran-based 

procedure and the FR4 code from D. Malcolm Associates.  The comparison is summarized in Table 1, 

which is extracted from a report from T.D. Ashwill of SNL to Vern Wallace of Flowind Corporation [6]. 

 

Table 1. Comparison of natural frequency predictions from Nastran and EOLE4 for the Flowind 
23-m Darrieus rotor 

 0 rpm 30 rpm 47 rpm 60 rpm 
Mode shape Nastran EOLE4 Nastran EOLE4 Nastran EOLE4 Nastran EOLE4 

 Hz Hz Hz Hz Hz Hz Hz Hz 
1Pr 0.144 0.144 0.148 0.141 0.152 0.138 0.157 0.134 

1T1/BE 0.978 0.976 0.846 0.848 0.652 0.653 0.460 0.461 
1T2/BE 0.98 0.98 1.04 1.041 1.095 1.095 1.144 1.14 

1F1 1.246 1.243 1.583 1.572 1.874 1.855 2.017 2.00 

1F2 1.25 1.247 1.591 1.58 1.902 1.881 2.138 2.11 
1F3 1.259 1.256 1.61 1.599 1.958 1.94 2.229 2.2 

TT1/BE 1.662 1.647 1.361 1.359 1.329 1.326 1.339 1.333 

TT2/BE 1.664 1.675 2.132 2.132 2.415 2.415 2.53 2.523 

2Pr 2.473  2.641  2.55  2.624  

2F1 2.548  2.781  3.203  3.613  

2F2 2.554  3.026  3.416  3.728  

2F3 2.579  3.042  3.45  3.798  

The following abbreviations are used to describe the mode shapes 

1Pr   first propeller mode 

F1, 1F2, 1F3  first flatwise modes 

1Tl/BE, IT2/BE first tower modes (with blade edgewise deformation) 

2Fl, 2F2, 2F3  second flatwise modes 

Finite element 

discretization 

Rotor speed, harmonics 

number, options. 

EOLE5 

Calculation of operating 

natural frequencies 

Campbell diagram 

Airfoil 

database 

Wind speed, wind 

shear, output 

options 

FR4 

Calculation of harmonic 

responses 

Displacements,  

member forces  

& stresses 
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2Pr   second propeller mode 

TTI/BE, TT2/BE first tower modes with top motion (and blade edgewise deformation) 

 

The EOLE4 natural frequencies can be seen to agree well with corresponding values from the Nastran-

based procedure.  The latter has been compared with field data from several Darrieus rotors as part of the 

Sandia VAWT program. 

4 Comparison with WHI field data 
In 2015 Wind Harvest International (WHI) started testing a small straight-bladed VAWT at the 

Folkecenter site in Denmark.  A general assembly drawing of this turbine is shown in Figure 4. 

4.1 Operating natural frequencies 
The stationary rotor was tested for its fundamental natural frequency which was found to be 

approximately 0.65 Hz. The finite element model within EOLE5 and FR4 was tuned to agree with this 

value. 

4.1.1 Campbell diagram 
The Campbell diagram for this turbine was obtained from the EOLE5 code and is shown in Figure 2 

below.  It predicts a 0P instability at approximately 42 rpm. 

 

 
Figure 2. Campbell diagram for WHI G168 at Folkecenter, Denmark 

4.1.2 0P resonance  
Strain gauge data from the central mast were used to confirm the presence of the 0P resonance at 

approximately 42 rpm indicated on the Campbell diagram in Figure 2.  During record 20160321-1201 the 

rotor speed fell from 50 rpm to as low as 43 rpm.  When this happened the small out-of-balance inherent 

in the rotor was sufficient to superimpose a large steady bending on the central mast, as illustrated in 

Figure 3.  From this it can be concluded that the resonant rotor speed is 43 rpm or lower.  The turbine was 
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also operated at rotor speeds of up to 38 rpm without any 0P bending being observed.  This implies that 

the resonance was above 38 rpm. 

 
Figure 3. 0P  resonance near 42 rpm 

4.2 Operating forced response 
The WHI G168 at the Folkecenter, Denmark, was fitted with strain gauges measuring both the bending in 

the central mast and flapwise bending in one of the blades.  Details of the experimental configuration can 

be found in [8]. The location of the gauges is shown in Figure 4. Each of the mast bending gauges 

consisted of a full bridge and were calibrated by inserting a shunt resistor and by applying a measured 

external bending to the mast.  The blade gauges (installed later) were placed at the maximum blade 

thickness and consisted of a half bridge. 

 

 
Figure 4. Location of strain gauges on WHI G168 at Folkecenter, Dk 
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4.2.1 Mast bending, operation at 30-35 rpm 
Mast bending data was collected on March 19th 2016 when the rotor speed was between 30 and 35 rpm 

and the average wind speed was approximately 8.2 m/s.  A sample of the mast bending, the rotor speed, 

and the wind speed is shown in Figure 5. 

 

 
Figure 5. Mast bending, wind speeds, and rotor speed, record 20190319-1312 

There is a dominant 1P component in the mast bending signals but the amplitude of this component varies 

due to fluctuating wind speed and rpm values.  To arrive at the most common excursion range in these 

signals (which is an indication of the average 1P component), the signals were processed by a rainflow 

algorithm [7]. Figure 6 shows the results of this process on 500 seconds of the signals 

 

 
Figure 6. Rainflow counts of mast bending in record 20160319-1312 
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The rainflow counts indicate the most frequent magnitude (of the full range) to be between 35 and 40 kN 

m.  This value was compared with the FR4 predictions using rotor speeds of 30 and 35 rpm and a wind 

speed of 8.2 m/s.  The results are presented in Table 2. 

 

Table 2. Summary of 1P bending ranges in field and model data, 30-35 rpm 

 Rotor speed 

 

rpm 

Wind speed 

 

m/s 

Most frequent 

rainflow excursions 

kN m 

1P range 

 

kN m 

FR4  run 155, 

node 9 

30 8.2  24 

FR4 run 156 

node 9 

35 8.2  29 

FR4 run xxx 
node 9 

35 9.5  32 

Field data 

20160319-1312 

200-700 s 

Range: 30-35 Range:4-11 

Mean 8.1 

Upper 5%:35 – 40 

Peak at 37 

 

 

Table 2 shows the range of FR4 predictions are somewhat less than the rainflow counts of the field data.  

The latter include the contributions from higher harmonics (2P and 3P) and might be expected to be 

slightly greater than the 1P alone. 

 

4.2.2 Mast bending, operation at 50 rpm 
Mast bending data were collected on March 21st 2016 when the rotor speed was between 50 and 53 rpm 

and the average wind speed was approximately 8.2 m/s.  A sample of the mast bending, the rotor speed, 

and the wind speed is shown in Figure 7 

 

 
Figure 7. Mast bending, wind speeds, and rotor speed, record 20190321-1201 

Once again the amplitude of the dominant 1P component is masked by the variations in wind speed and, 

to a lesser extent, the rotor speed. To arrive at the most common excursion range in these signals, the 

signals were processed by a rainflow algorithm [7]. Figure 8 shows the results of this process on 300 

seconds of the signals 
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Figure 8. Rainflow counts of mast bending in record 20160321-1201 

The rainflow counts indicate the most frequent magnitude (of the full range) to be between and 68 and 73 

kN m.  This value was compared with the FR4 predictions using rotor speeds of 50 and 52 rpm and a 

wind speeds of 8.6 and 9.0 m/s.  The results are presented in Table 3 

 

Table 3. Summary of 1P bending ranges in field and model data, 50-52 rpm 

 Rotor speed 

 

rpm 

Wind speed 

 

m/s 

Most frequent 

rainflow excursions 

kN m 

1P range 

 

kN m 

FR4  run129 , 

node 9 

52 9.0  96 

FR4 run157  

node 9 

50 8.6  72 

Field data 

20160321-1201 

550-850 s 

Range: 48-53 Mean 9.7 Peak at 68- 73  

 

Table 3 shows the range of FR4 predictions overlaps well with the rainflow counts of the field data.  The 

latter include the contributions from higher harmonics (2P and 3P) and might be expected to be slightly 

greater than the 1P alone. 

 

4.2.3 Blade bending, operation at 30 rpm 
A set of two gauges (making a half bridge) were installed in the center of a lower blade span in March 

2016 (see Figure 4).  Data were collected with an operating speed of between 30 and 38  rpm and a wind 

speed in the range of 10 to 15 m/s, as shown in Figure 9. The oscillations in the rotor speed are probably a 

function of the control system.  The effects from centrifugal action can be noted from the changes in the 

mean bending relative to the stationary rotor.  The effects of the aerodynamic loads are seen as the largely 

1P cycles in the bending signal.  
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Figure 9. Blade bending, rotor rpm, wind speed from record 20160328-2118 

 

The bending signal was processed by a rainflow algorithm to identify the most common amplitude of 

these cycles which are shown in Figure 10.  That figure suggests two values of peak frequency which are 

likely to be associated with the range of rotor speeds. 

 

 
Figure 10. Distribution of rainflow counted excursions of flapwise bending 
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Table 4. Measured and predicted blade flapwise bending from centrifugal and from aerodynamic 
loads 

rpm Wind 

speed 

m/s 

Centrifugal 

load 

estimate 

N/mm 

Centrifugal 

bending FR4 

estimate 

kN m 

Centrifugal 

bending 

measured 

kN m 

1P range 

FR4 

estimate 

kN m 

1P range 

measured 

kN m 

30 14 0.716 1.64 

 run 153 

1.40 0.96 

run153 

0.83 

37 14 1.089 2.49 

 run 158 

1.95 1.20 

run158 

1.03 

 

4.2.4 Critical crossings 
The Campbell diagram shown in Figure 2 includes a crossing of the 1P loading and the fundamental tilt 

mode at 20 rpm.  It also shows a crossing of the 2P excitation with the fundamental tilt mode at 15 rpm.  

In the field, during the start-up procedure, some resonance was observed at 15 rpm but not at 20 rpm. 

 

The FR4 code shows that the 1P loading consists largely of modal components of the first two (real) tilt 

modes with a 90° phase difference.  These are also the two (real) modes that comprise the complex tilt 

mode shapes.  However, the phase relationship of the two components in the complex mode are directly 

opposed to the phase relationship of the components of the 1P aerodynamic loading.  This explains why 

no resonance was observed when the rotor speed passed through 20 rpm. 

 

A similar analysis of the 2P crossing at 15 rpm showed that the modal components of the loading had the 

same phase relationship as the complex operating mode.  Such a relationship leads to a potential 

resonance and a critical crossing which was confirmed by the field observations. 

4.3 Summary  
The Campbell diagram generated by the EOLE5 code predicted a 0P resonance at approximately 42 rpm.  

This was supported by field data for mast bending (see Figure 3) 

 

Mast bending data during operation between 30 and 35 rpm (Figure 5) was compared to predictions from 

FR4. The field data was slightly greater than the model predictions 

 

Mast bending data were also collected during operation between 50 and 52 rpm (Figure 7) and compared 

with FR4 model predictions.  In this case the model predictions slightly exceeded the field data. 

 

Flapwise blade bending data were collected during operation at 30-35 rpm and the values were compared 

with the FR4 model predictions.  For both the centrifugal effects and for the response to aerodynamic 

loads the model predictions were approximately 15-20% greater than the field data.  Possible reasons for 

this include: 

• Both the rotor speed and the wind speed were not constant 

• The strain gauges may not have been placed exactly at the position of maximum blade thickness. 

• The section modulus of the blade may have been overestimated. 
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• The extent of restraint offered to the blade at the connection to the middle strut was uncertain. In 

the FR4 model the connection was assumed pinned whereas in practice it may have carried some 

moment. 

 

The observed resonance when passing through 15 rpm and lack of any resonance when passing through 

20 rpm was explained by an analysis of the modal phase relationships of the 1P and 2P aerodynamic 

loadings. 
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