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ABSTRACT 
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Category UC-60 

Aeroelastic effects impact the structural dynamic behavior of vertical axis wind 
turbines (VAWTs) in two major ways. First, the stability phenomena of flutter and 
divergence are direct results of the aeroelasticity of the structure. Secondly, 
aerodynamic damping can be important for predicting response levels, particularly 
near resonance, but also for off-resonance conditions. The inclusion of the aero- 
elasticity is carried out by modifying the damping and stiffness matrices in the 
NASTRAN finite element code. Through the use of a specially designed preprocessor, 
which reads the usual NASTRAN input deck and adds appropriate cards to it, the 
incorporation of the aeroelastic effects has been made relatively transparent to 
the user. NASTRAN flutter predictions are validated using field measurements 
the effect of aerodynamic damping is demonstrated through an application to 
Test Bed VAWT being designed at Sandia. 

and 
the 

*This work performed at Sandia National Laboratories is supported by the U.S. 
Department of Energy under Contract Number DE-AC04-76D00789. 
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IblTRODUCTIOl 

The aeroelastic analysis of wind turbines is entirely similar to that done for 
subsonic aircraft wing structures, and most of the theory that has been developed 

for those structures carries over directly. 
is that the aerodynamic loads depend on motions of the structure which change the 
angle of attack. As an example, for a horizontal wing structure, wing velocities 
in the vertical direction change the angle of attack in such a way that the motion 
is resisted by the induced aerodynamic loads. 

aerodynamic damping. Alternatively, for wing torsion, the induced loads generally 
act to increase the motion, leading to a possible divergence or flutter condition. 

The essence of aeroelastic behavior 

This type of motion produces 

In the case of flutter the oscillatory motion of the blade necessitates the use of 
unsteady aerodynamic theory. This theory introduces complex valued coefficients, 

which are functions of the reduced frequency (Strouhal Number), in the expressions 
for the aerodynamic loads. These coefficients alter the phase relations between 
the blade motions and the resulting aerodynamic loads, and can be very important 
in the prediction of flutter. For the analysis of divergence, which is a static 
phenomenon, the same equations apply, but the reduced frequency must be set to 
zero. Generally for VAWTs, flutter and divergence instabilities have not been an 
issue. However, during the design stage of a new turbine, it is always prudent to 
establish the flutter and divergence boundaries to avoid the catastrophic 
consequences associated with these phenomena. 

For frequency response analysis aeroelasticity is important in establishing the 
level of aerodynamic damping. 
can be substantial, leading to significant reductions in even the off-resonance 
response. Additionally, with the advent of modeling atmospheric turbulence, 
analysis procedures will have to accommodate dynamic response at all frequencies 
rather than just the integer multiples of the operating speed. 
accurate response levels near the natural frequencies of the rotor some reasonable 
estimate of the damping will be required. 
as significant as the low level of structural damping that generally exists in 
VAWTs, it is important that it also be accounted for in the analysis. 

For VAWTs with high tip speeds aerodynamic damping 

Thus, to obtain 

Since aerodynamic damping is at least 
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The inclusion of the aeroelasticity is carried out by modifying the damping and 

stiffness matrices in the NASTRAN finite element code (using NASTRAN's "DMIG" 

input option). 

SofLening matrices required for modeling the rotating coordinate system effects. 

The stability and frequency response of the turbine are subsequently investigated 

using the appropriate NASTRAN solution procedure. Through the use of a specially 

designed preprocessor, which reads the usual NASTRAN input deck and adds 

appropriate cards to it, the incorporation of the aeroelastic effects has been 

made relatively transparent to the user. 

These modifications are incorporated with the Coriolis and 

A number of other investigators have addressed the issue of aeroelasticity in 
VAWTs [1,2,31 with good success. Although the approach is similar to the one used 

here, their work is based on a modal representation using generalized degrees of 

freedom. In addition, the phase relations between the structural motions and the 

induced aerodynamic loads are taken to be zero. The work presented here utilizes 

physical degrees of freedom, which simplifies the NASTRAN input of the 

aeroelasticity matrices. 
the induced loads, as prescribed by unsteady aerodynamic theory, are also retained. 

The phase relations between the structural motions and 

The remainder of this paper includes sections which describe the theory used in 

the development of the aeroelasticity matrices, present and discuss specific 

results, and draw some conclusions. 

AEROELASTICITY THEORY FOR VAWTS 

In this analysis, a VAWT blade is visualized as a series of straight airfoil 

sections joined together to form the desired shape. 

aeroelasticity of a wing structure is assumed to be applicable to each segment. 

An excellent presentation of the physics and the governing equations of subsonic 

aeroclaslicity for wing structures can be found in [ 4 1 .  The equations below are 

reproduced from that reference. As indicated above, unsteady aerodynamic theroy 

is used in their development. 

The theory for the 

6 



For subsonic flutter, the lifting force, L, and the moment about the center of 
twist, PI, resulting from the motion of a blade segment, are given by 

be b .. ab 6 
2u - 2v2 -2 f + Ce+[C(1-2a)+lI~ - 

2v 

-C$ + Ce + C(1-2a)- 2v , 
b() 2 .. 1 2 b3 a . 1  

- 2u - (:+a )-28 
2v + d2 2v 2v 

where, referring to Figure 1, 

0 
P 

V 

b 

a 

a 

dl 

d2 

C 

U 

e 

is the coefficient of lift (per radian), 

is the air mass density, 

is the air speed, 

is the half chord length, 

is the fraction of b that the center of twist is behind the half chord 

point, 

is the distance the center of pressure is ahead of the center of twist, 

is the distance the rear aerodynamic center of pressure is ahead of the 

center of twist, 

is the Theodorsen function, 

is the vertical wing motion, 

is the rotational wing motion about the center of twist. 

The terms which are proportional to the second time derivatives of u and 8 

represent "apparent mass" effects (additional mass due to air entrainment by the 

blade). 

these terms have been neglected in this analyis. 

center of twist of the blade section are taken to be colinear, rendering the 

quantity, a, to be zero. Incorporating these considerations, the equations for L 

and Ff become 

Since the air mass density is so much smaller than that of the blade, 

Also, the half chord point and 
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Center  of Center of R e a r  C e n t e r  
P r e s s u r e  T w i s t  of P r e s s u r e  

Figure 1. Blade Schematic. 

+ ce + ( l + c ) ~  

l4 = a pV b - d Cg + dlC8 + (dlC + d 1- be] 
0 2 [  l V  2 2v 

Equation (2) can be specialized further by replacing V with RQ, where R is the 
radial distance from the tower to the blade location of interest, and Q is the 
rotational speed of the turbine. With this approximation, only the relative air 
speed corresponding to the rotation of the rotor is taken into account in this 
aeroelasticity model. The free stream wind velocity is neglected. Also, for 
these computations, d and d are taken to be b/2 and -b/2, respectively. 
This places the center of pressure and rear center of pressure at the quarter 
chord and three quarter chord points, respectively. 

1 2 

The Theodorsen function, C,  is of great importance for accurately predicting 
flutter in wing structures, but less so in VAWTs. It is a complex valued function 
of the reduced frequency, k, and therefore affects the phase relationships between 
the wing motions and the resulting aerodynamic loads. It is usually found in 
tabular form but can be reasonably approximated by 
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. 165k2 - 
k2+ (.045512 k2+ (.3) 

r 1 

- .165 .0455k -i L 
k2+ (.045512 k2+ (.3) 

where 

k = Ob is the reduced frequency, V 

w is the oscillatory frequency of the wing, i.e., the flutter frequency. 

For flutter calculations, the value of w used in the evaluation of the 

Theodorsen function should be set at the flutter frequency. As this frequency is 

not precisely known at the outset, some amount of manual iteration is required. 

To establish divergence conditions w should be set to zero since divergence is a 

static phenomenon. For providing aerodynamic damping in frequency response 

computations, w should be set to some characteristic frequency anticipated in 

the response, i.e. 3/rev. 

In order to incorporate Equations (2) into NASTRIW, they are cast in a finite 
element form. This is accomplished using a Galerkin procedure. For the beam 

elements of which the VAWT blades are composed, the transverse and torsional 

degrees of freedom are assumed to vary linearly from one end of the element to the 

other. In the local element coordinate system, these motions are represented by 

where the subscripts denote the motions at either end of the element, and s is the 
arc length measured along the element and normalized by the element length. 
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Inserting this approximation into Equations (21, premultiplying by the same linear 

shape functions, and integrating over the length of the beam element, the 

contributions to the element damping and stiffness matrices are obtained as shown 

below 

Damping Matrix 

b 2 
( 1+C) 2( 1-5 2 -c ( 1-s r 

-(I 
0 

-cs (1-s 

Stiffness Matrix 

- 0 IBc 
where 

- 
0 

0 

0 

0 

-cs (1-s 

-d CS(1-S) 1 

-cs 2 

2 -d CS 1 

s(1-s) 0 

dlS ( 1-S) 0 

2 B = a pV bL, 0 

1 b (l+C)T (1-5) 

I ds 

(d2+dlC)2S(1-S) b 

b 2  (l+C)p 

(d2+dlC)p 
b 2  1 

s(1-s) 

dlS (1-5) 

2 
5 

2 
dls 

ds 

L is the length of the element. 
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and C, may all be functions of s. The d2 * Note that the quantities, V, b, dl, 

integrals are numerically evaluated using two-point Gaussian integration. 

As NASTRAN's DMIG input option only allows one matrix to be input for each of the 

structural matrices, it is necessary to assemble all of the element contributions 

prior to NASTRAN input. Before this can be carried out, however, all of the 

individual element matrices must be transformed from the local frames in which 

they have been developed, to the global coordinate system. 

Having provided these matrices to NASTRIW, flutter and divergence calculations are 

carried out using one of NASTRAN's complex eigenvalue solvers. Modes which are 

fluttering have negative damping coefficients, and divergent modes have null or 

negative frequencies. Frequency response analysis is accomplished in the usual 

manner using NASTRAN's frequency response solver. 

PRESENTATION AND DISCUSSION OF RESULTS 

To validate the analysis technique for predicting the onset of flutter, two test 

cases have been completed. 

uniform, cantilevered wing was compared to that obtained from an exact solution, 

and nearly perfect agreement was attained. 

computed for a specific configuration of the Sandia two meter VAWT, for which 

expcrimcnLa1 flutter data has been obtained. The flutter prediction of 680 RPH is 

in good agreement with the observed value of 745 RPM, especially since the 
predicted result does not include any structural damping. 

also correctly predicted. 

First, the predicted flutter speed for a straight, 

Secondly, the flutter speed was 

The flutter mode was 

Having established some credibility for the method, flutter predictions for the 
Sandia 34-m Test Bed VAWT design shown in Figure 2 have been made. 

innovation in this design is the variable blade section, which causes the rotor to 

stall at higher tip speeds. 

gear box loads and cost. 

A key 

This permits higher operating speeds which reduce 
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Figure 2 .  Arti 

- -  

t ' s  Concept of the Sandia 34-m Te t Bed Design. 

In Figure 3 the damping coefficient for the various modes of the turbine is 
plotted versus rotor RPH. 
behavior at 0 RPH, are identified by the labels to the right of the figure. The 
Pr or propeller modes are characterized by twisting motion of the rotor about the 

axis which is colinear with the tower. The F or flatwise modes primarily involve 
blade motion in the plane of the rotor with very little, if any, tower participa- 
tion. The subscript, S, denotes symmetry in the motion of the two blades, and A, 
asymmetry. The B or butterfly modes consist of blade motion out of the plane of 
the rotor, which resembles the flapping of butterfly wings. This is usually 
coupled with some out-of-plane tower motion. And finally, the TI modes, or tower 
in plane modes, primarily involve tower motion in plane of the rotor. 

The modes, which are characterized by their dominant 
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OMG = 4 . 0  Hz 
I 

2 0  

5 

Rotor RPM \\ 

Figure 3. Damping Coefficients Versus RPM for the 34-m Test 
Bed, Aerodynamic Damping Only. 

The damping coefficients shown in this figure correspond to percent of critical 

structural, rather than viscous damping. However, they derive totally from 
aeroelastic effects, i.e., no structural damping has been included. 
these curves the oscillatory frequency, o, was set at 4 hz, which corresponds to 
the frequency of the 2FS mode as it crosses the axis at 82 RPH. 

flatwise modes are substantially damped over a large range of RPMs and eventually 

become unstable as they cross the axis. Other modes, such as the 1B and 1T1, 
become unstable at a relatively low RPH and remain modestly so out to higher 
rotational speeds. 
shown, a small amount of structural damping stabilizes them. The mode that 
actually establishes the flutter speed is the flatwise mode that first goes 
unstable. 
consequently, the flutter speed for the Test Bed is predicted to be approximately 
82 R P M .  This is well above the operating speed range of 28 to 40 RPH. 

In computing 

Generally the 

These are not as crucial as they might seem since, as will be 

As shown in Figure 3, this corresponds to the 2FS mode and, 
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In Figure 4 damping coefficients similar to those of Figure 3 are shown, except 
that in Figure 4 ,  structural damping at a level of 2 percent of critical has been 
included. This level is consistent with values reduced from data taken from 
Sandia's two-meter VAWT 151. In general, the primary effect of including the 
structural damping is that the curves for the various modes are raised by 
approximately the amount of damping specified. This tends to stabilize the 1B and 
1TI modes and increases the flutter speed to 89 RPM. 

20 

15 

10 

5 

2 

S t r u c t u r a l  Damping = 2% 
OMG = 4.0 Hz 

1TI 
Rotor R P M  

Figure 4 .  Damping Coefficients Versus RPH for the 34-m Test Bed, Aerodynamic Plus 
Structural Damping. 

In an attempt to discern the role of the Theodorsen function in analyzing the 
aeroelastic behavior of VAWTs, o was set to zero. For this value, the Theodorsen 
function is real rather than complex and has a value of unity. In this case, the 
predicted flutter speed becomes 84 RPH rather than 82,  a modest Uifference. 
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However, damping factors are approximately 20 percent greater than previous 
values, which may lead to some degree of unconservatism in the predicted 
structural response. 

To investigate the divergence characteristics of the Test Bed, the fanplot shown 
in Figure 5 was produced using a value of zero for o. 
proved to be relatively insensitive to the value of o used. 
denote the forcing frequencies that are present at each RPM as a result of the 
rotor turning in a steady wind. Recalling that divergence is indicated by a 
natural frequency dropping to zero, there is no indication of divergence or even 
its onset from this figure. The descent of the frequency of the 1B mode is a 
result of the whirl instability rather than aeroelastic divergence. 

Actually the fanplot 
The dashed P lines 

N 
X . 

5 

4 

3 

2 

1 

20 40  60 80 100 120 140 

Rotor RPM 

Figure 5. Fanplot for the 34-m Test Bed. 



The effect of aerodynamic damping on the off-resonance response of a VAWT was 

determined by computing the response of the 34-m Test Bed with and without the 

aeroelasticity, at a rotational speed of 40 R P W .  Results for the blade flatwise 

RMS stress versus vertical location are provided in Figure 6. The curves shown 

correspond to a wind speed of 20.11 m/s (45 WH). As indicated, the aerodynamic 

damping provides an RUS peak stress reduction of approximately 20 percent. If the 

flatwise vibratory stresses happen to drive the fatigue life of the blade, this 

reduction would substantially increase its life. 

. 
Io 
Io 
ar 
!4 27.58 
$ (4000) 
h 
!4 
0 
c, 
a -  ! 4 . ~  20.68 

3 .; 

; (2000) 

a 10 (3000) 
4 a 
mpI  '' 13.79 

4 
3 
c, a 
I+ 

h 6.89 
(1000) 

Figure 6. 

. \ \  '\\ \ 

no damping 
with aeroelastic 
damping 

- - - - -  

25.4 
(1000) 

Distance from Top of Blade, m(in) 

50.8 
(2000) 

Effect of Aerodynamic Damping on Flatwise RUS Vibratory Stresses for 
the 34-m Test Bed. 
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CONCLUSIONS 

Aeroelasticity can produce unstable behavior in VAWTs associated with the 

phenomena of flutter and divergence. The occurrence of divergence, however, is 
unlikely because of the additional torsional stiffness afforded the blade by its 
attachment to the tower at each end, in contrast to the cantilever design of an 
aircraft wing. Additionally, it is anticipated that the whirl instability point 
would always occur prior to the onset of divergence. The possibility of flutter 
is not as remote as divergence. However, predicted flutter speeds tend to be two 
to three times that of the operating speed. In any case, for a new turbine 
design, it is always prudent to establish the flutter speed in order to avoid the 
serious consequences of flutter, should it occur. The method described here 
provides a relatively simple and accurate means of accomplishing this. 

The same method also provides a simple way to incorporate aerodynamic damping in 
frequency response analyses. As shown, aeroelasticity can produce damping factors 
associated with flatwise blade motion as high as 20 percent of critical. At these 
levels, even the off-resonance response can be significantly reduced. This 
suggests that an additional benefit of VAWT designs with higher tipspeeds may be a 
reduction in flatwise blade response due to higher damping levels. 
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